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Radiative transfer in chiral random media
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This paper is devoted to the investigation of polarization and radiative characteristics of coherent and
diffused light beams in isotropic media with optically active particles. Simple solutions for the Stokes vectors
of the direct and diffused beams are obtained in the framework of the vector radiative transfer theory. Results
obtained can be used for the generalization of the circular dichroism and optical rotation dispersion spectros-
copy for the case of disperse media.@S1063-651X~99!15210-3#
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I. INTRODUCTION

All natural products, which play an essential part in t
phenomena of vegetable and animal life, are asymmetric@1#.
As a result, left-handed and right-handed circularly polariz
electromagnetic waves propagate through such media
different velocities. This produces the rotation of the pol
ization plane of incident linearly polarized light beams. C
ral media are also characterized by circular dichroism or
ferent absorption of left-handed and right-handed circula
polarized waves. The circular dichroism~CD! spectra and
optical rotatory dispersion~ORD! are standard tools in th
stereochemistry of organic molecules@2#.

The interpretation of both the circular dichroism and t
optically rotatory dispersion curves becomes much m
complex if molecules build agglomerates. The scattering
light plays an essential role in this case@3–8#. Thus, chem-
ists try to avoid this complication and make measureme
for uniform media. However, the scattering of light cann
be avoided in many cases. This is true, e.g., for biopartic
including red blood cell membranes, viruses nuclei, mi
chondria, and ribosoms. One cannot dilute such media w
out destroying their structural elements. It is important
have a chance to monitor the rearrangement of chem
groups in bioparticles during their lifecycles.

The interpretation of ORD and CD spectra of particula
media of any geometrical thickness can be done on the
of the radiative transfer theory~RTT! @9,10# that was initially
applied in the field of astrophysics for studying the phot
transport in planetary atmospheres, interstellar dust, an
great variety of astrophysical objects.

The scattered light transforms from the artifact to t
valuable source of the information on the microstructure
media under investigation if one applies the RTT to the pr
lem in question. It is possible to use both reflection a
transmission schemes in the CD and ORD spectroscopy
different angles of observations, wavelengths, and polar
tion states of the incident light in the framework of the RT
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which provides more information for the solution of the i
verse problem.

The main task of this paper is the introduction to t
modern radiative transfer theory for the analysis of the o
cal properties of disperse media with optically active p
ticles. We formulate the vector radiative transfer equation
chiral media and obtain its analytical solution for thin plan
parallel layers in terms of the elements of the extinction a
scattering matrices.

II. THEORY

A. General equations

The change of the energy and state of the polarization
the photon flux in the chiral plane-parallel slabs can be
scribed by the following Boltzman type equation@10–14#:

m
dJW~VW ,z!

dz
52ŝextJW~VW ,z!

1E
4p

ŝsca~VW 8→VW !JW~VW 8,z!dVW 8, ~1!

whereJW (VW ,z)5(I ,Q,U,V) is the Stokes vector of the ligh
beam in the directionVW (U,f) at the geometrical depthz,
ŝext is the extinction matrix,ŝsca(VW 8→VW ) is the differential
scattering matrix, andm is the cosine of the observatio
angle. The last term in Eq.~1! describes the process of mu
tiple scattering of photons in chiral media. The positiveZ
direction is pointing from the top to the bottom of a layer

Note that the components of the Stokes vector can
expressed via components of the electric vector of the s
tered wave, propagating in the directioneW35eW23eW1 ,

EW 5E1eW11E2eW2 . ~2!

They are defined by the following equations@9,15#:

I 5E1E1* 1E2E2* , ~3!

Q5E1E1* 2E2E2* , ~4!
4899 © 1999 The American Physical Society
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U5E1E2* 1E2E1* , ~5!

V5 i ~E1E2* 2E2E1* !, ~6!

where an asterisk denotes the conjugate complex value.
omit a common multiplier in Eqs.~3!–~6! for the sake of
simplicity. One can see that Eq.~3! determines the intensity
of the light field. The values ofI, Q, U, andV completely
characterize the arbitrarily polarized light beam in terms
the intensity, degree of polarization, and characteristics
the polarization ellipse~the ellipticity e, the direction of ro-
tation, and azimuthc!. The ellipticity ee@0,1# is defined as
the ratio of axes of the polarization ellipse. The value oe
50 corresponds to the linearly polarized beam. The case
51 holds for the circularly polarized light. The azimuthc
defines the orientation of the polarization ellipse. One c
introduce the ellipticity anglew as well. The absolute valu
of this angle is equal to arctane and the sign defines th
direction of the rotation of the polarization ellipse.

Light beams with the same values of the Stokes vec
cannot be distinguished by polarization measurements d
mining quadratic quantities~e.g., ^EW EW * &!. However, these
radiation fluxes can differ, since they can have differe
high-range field correlators.

The components of the Stokes vector can be rewritte
terms of the amplitudesa1 , a2 and phasess1 , s2 of a
simple electromagnetic wave as well:

I 5a1
21a2

2, ~7!

Q5a1
22a2

2, ~8!

U52a1a2 cos~s12s2!, ~9!

V52a1a2 sin~s12s2!, ~10!

where we used the following representation of the elec
field components:

E15a1ei ~kz2vt1s1!, E25a2ei ~kz2vt1s2!. ~11!

Herek52p/l, l is the wavelength,z is the distance along
the propagation directioneW3 , v5kc is the frequency,c is the
speed of light, andt is the time. Note that amplitudes an
phases in Eqs.~11! are not constants for real light beam
Thus, Eqs.~3!–~10! should be averaged taking into accou
many vibrations@9#.

As it was mentioned before, the components of the Sto
vector completely define the characteristics of the ellipse
the polarization~c, w!. Stokes parameters are related to t
values ofc, w with the following equations@9#.

I 5a2, Q5a2 cos 2w cos 2c, U5a2 cos 2w sin 2c,

V5a2 sin 2w, ~12!

wherea25a1
21a2

2. These formulas provide the geometric
interpretation of Eqs.~7!–~10!. It follows from Eqs.~12!

c5
1

2
arctan

U

Q
, w5

1

2
arcsinS V

IP D , P5
AQ21U21V2

I
,

~13!
e

f
f

n

r
er-

t

in

c

t

s
f

e

l

where cP@0,p#, wP@2p/4,p/4#, sgn (cos 2c)5sgn(Q),
and the degree of polarizationPP@0,1#. The Stokes param
eters ~12! describe the completely polarized beam andI
5AQ21U21V2 in this case. Equations~13! can be applied
for partially polarized beams (PÞ1) as well. The dependen
cies of anglesw, c on the Stokes parameters are presente
Figs. 1 and 2. One can see thatw'V/2IP at uV/IPu<0.4,
which is often the case. It follows from Fig. 3 thate'uwu at
uwu<0.2.

The value ofc determines the angle between the ma
axis of a polarization ellipse~maximum intensity compo-
nent! and the arbitrary direction. Thus, it is coordinate d
pendent. The ellipticity represents the ratio of small to lar
axes of the polarization ellipse. This number is coordin
independent. There are two values ofc, which satisfy Eq.
~13! ~see Fig. 2!. The right value is selected from the cond
tion sgn(cos 2c)5sgn(Q). This means thatcP@0,p/4@or
cP]3p/4,p] for positive values of Qand cP@p/4,3p/4#
~the middle line in Fig. 2! at Q<0. The azimuthc is not
defined atU5Q50, which means that there is not a spec
preferred oscillation direction in this particular case.

The positive values ofw mean that the polarization i
right-handed or the electric vector traces the polarization

FIG. 1. The dependence ofw on V/IP.

FIG. 2. The dependence ofc on U/Q.
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lipse in the clockwise sense when looking in the direct
from which the light is coming@3#. It should be pointed ou
that there is not a unique mathematical definition of rig
handed and left-handed polarized waves. Thus, one sh
be careful in this respect while comparing results of differ
authors.

Thus, the solution of Eq.~1! allows for the determination
of values ofa, w, andc and the degree of polarization

P5
AQ21U21V2

I
. ~14!

The information obtained can be used for the s
reoochemical analysis of molecules inside small particles
should be pointed out that Eq.~1! can be applied only for
media with distances between particles being much la
than the wavelength and the size of scatterers. This o
holds in the optical band of the electromagnetic spectrum

Let us represent the Stokes vector in Eq.~1! as the sum of
two components:

JW~V8,z!5JW c~VW 8,z!d~VW 82VW 0!1JWd~VW 8,z!, ~15!

whereJW c(VW 8,z) is the Stokes vector of the direct~or coher-
ent! beam,d is the delta function,VW 0 is the direction of
propagation of an incident beam, andJWd(VW 8,z) is the Stokes
vector of the diffused light in the directionVW 8 at the depthz.
From Eqs.~1! and ~15! it follows

m
dJWd~VW ,z!

dz
52ŝextJWd~VW ,z!

1E
4p

ŝsca~VW 82VW !JWd~VW 8,z!dVW 8

1ŝsca~VW 02VW !JW c~VW 0 ,z! ~16!

and

m
dJW c~VW 0 ,z!

dz
52ŝextJW c~VW 0 ,z!. ~17!

FIG. 3. The dependence ofe on w.
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Equation~17! describes the transformation of the intens
and polarization charateristics of a direct beam. It can
solved analytically@13#:

JW c~VW 0 ,z!5expH 2
ŝextz

m J JW c~VW 0,0!, ~18!

where we assumed that the medium is uniform andJW c(VW 0,0)
is the Stokes vector of the incident waveJW0(VW 0) at the top of
a layer (z50):

JW c~VW 0,0!5JW0~VW 0!.

The solution of the four integrodifferential equations~16!
for the diffused light is more complex. It can be done, e.
with the doubling method@16#. In the framework of this
method one should calculate the radiation characteristics
very thin layer with thicknessz1 in a single scattering ap
proximation, neglecting the integral in Eq.~16!:

m
dJWd~VW ,z!

dz
52ŝextJWd~VW ,z!1ŝsca~VW 0→VW !JW c~VW 0 ,z!.

~19!

The radiation characteristics of the combined layer w
thickness 2z1 can be found, accounting for the interactio
between the second and first layers. Repeating this proce
to the pointz5z0 , wherez0 is the thickness of a layer, on
can solve Eq.~16!. Note that the thickness of adding laye
can be different in principle.

Thus, it is important to have the analytical solution of E
~19! as a starting point for the numerical procedure. It is a
of general importance due to the possibility of preparing
thin layer in a laboratory, making the account for the integ
term in Eq.~16! unnecessary. The solution of Eq.~19! can be
presented in the following formal form:

JWd
↓~z!5E

0

z

e2ŝextz/mBW ~z!
dz

m
, ~20!

JWd
↑~z!5E

z0

z

e2ŝextz/mBW ~z!
dz

m
, ~21!

where JWd
↑ and JWd

↓ are Stokes vectors of light fields pro

pagated to the top and bottom of a layer, respectively,BW (z)
5ŝsca(VW 0→VW )JW c(VW 0 ,z), and we used the boundary cond
tions

JWd
↓~0!50, ~22!

JWd
↑~z0!50, ~23!

which state that there is no diffused light field incident on t
top @Eq. ~22!# and on the bottom@Eq. ~23!# of a layer from
outer space. Note, that Eqs.~20!, ~21!, and~1! are equivalent,
if one includes the integral multiple scattering term in t
source functionBW in Eqs.~20! and ~21!.

Integrals~20! and ~21! can be found analytically@13# for
some specific source functionsBW (z). However, calculations
with Eqs. ~18!, ~20!, and ~21! are complex in the genera
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case. Thus, our primary task will be a derivation of simp
fied formulas both for the directJW c @see Eq.~18!# and singly
scattered diffusedJWd @see Eqs.~20! and~21!# components in
the special case of disperse media with spherical chiral
ticles, surrounded by a uniform isotropic symmetric nona
sorbing host medium.

B. Direct light

The general structure of matricesŝext and ŝsca(VW 82VW )
for isotropic media with spherical chiral scatters can be p
sented in the following form@4,10–16#.

ŝext5««̂, «̂5S 1
0
0
a

0
1

2b
0

0
b
1
0

a
0
0
1
D , ~24!

ŝsca5L̂~p2 i 2!ŝsca
s L̂~2 i 1!, ŝsca

s 5sŝ,

ŝ5S 1
b1

2b3

b5

b1

a2

2b4

b6

b3

b4

a3

2b2

b5

b6

b2

a4

D . ~25!

Note that rotation matricesL̂(2 i 1) and L̂(p2 i 2) perform
the transformation of the coordinate system related to
scattering plane. The matrixŝsca

s is defined in the coordinate
system, related to a scattering plane. One can find definit
for these matrices and anglesi 1 and i 2 in the Appendix. The
relationships between elements of matrices~24! and ~25!
with parameters of particles~their size, complex refractive
indices! are presented in the Appendix as well.

First of all, let us consider the solution of four linea
differential Eqs.~17! with the extinction matrix~24!. Ana-
lytical solution of this system can be obtained with stand
methods@11,17#:

JW c~V0!5T̂JW0~V0!, ~26!

whereT̂5 P̂F̂ P̂21. The matrixP̂ is composed of eigenvec
tors of the extinction matrix«̂ @Eq. ~24!#.

JW 15S 21
0
0
1
D , JW 25S 1

0
0
1
D , JW 35S 0

2 i
1
0
D ,

JW 45S 0
i
1
0
D , ~27!

namely,

P̂5S 21
0
0
1

1
0
0
1

0
2 i
1
0

0
i
1
0
D ~28!
r-
-

-

e

ns

d

and

F̂5S e2l1s

0
0
0

0
e2l2s

0
0

0
0

e2l3s

0

0
0
0

e2l4s
D . ~29!

Here,s5t/j, t5«z, j5cosq0, q0 is the incidence angle
and l1512a, l2511a and l3511 ib, l4512 ib are
eigenvalues of the extinction matrix«̂ @Eq. ~24!#. Note, that
it follows for the inverse matrixP̂21 @see Eq.~28!#:

P̂215
1

2 S 21
1
0
0

0
0
i

2 i

0
0
1
1

1
1
0
0
D . ~30!

Thus, the transformation matrixT̂ in Eq. ~26!, which coin-
cides with the matricant in Eq.~18!, has the following form
@see Eqs.~28!–~30!#:

T̂5e2sS coshas
0
0

2sinhas

0
cosbs
sinbs

0

0
2sinbs
cosbs

0

2sinhas
0
0

coshas
D .

~31!

Solutions ~26! and ~31! for the direct componen
JW c(I c ,Qc ,Uc ,Vc) are much simplier than Eq.~18!. They
have the following explicit form:

I c5~ I 0 coshas2V0 sinhas!e2s, ~32!

Qc5~Q0 cosbs2U0 sinbs!e2s, ~33!

Uc5~Q0 sinbs2U0 cosbs!e2s, ~34!

Vc5~2I 0 sinhas1V0 coshas!e2s. ~35!

Equations~32!–~35! and Eq.~13! can be used for the inves
tigation of the polarization characteristics of the direct be
under different types of the illumination of a turbid layer.

It is interesting that the transformation of components~Q,
U! and~I, V! is independent in the case under investigatio
Thus, circularly polarized waves~Q05U050, V056I 0!
propagate in isotropic chiral media without changing t
state of the polarization. For instance, it follows for the le
handed circularly polarized beam,

I 05c, V052c, Q05U050, ~36!

wherec is constant. One obtains from Eqs.~32!–~36!,

I c5c8, Vc52c8, Qc5Uc50, ~37!

wherec5ce2l1s. It follows for the right-handed circularly
polarized circular incident wave,

I 05V05c, Q05U050. ~38!

Thus, the components of the direct beam will be

I c5Vc5c9, Qc5Uc50, ~39!
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wherec95ce2l2s.
Note that only two eigenvectors in Eqs.~27! have nonzero

first elements. They correspond to left-handed and rig
handed circularly polarized waves. These waves can be
fined as eigenwaves in chiral isotropic media.

Let us consider now the case of the illumination of a lay
by a vertically polarized light beam (c5p/2) with Stokes
parameters:I 05b, Q052b, and U05V050, where b
5const. It follows from Eqs.~32!–~35! in this case,

I c5b cosh~as!e2s, ~40!

Qc52b cos~bs!e2s, ~41!

Uc52b sin~bs!e2s, ~42!

Vc52b sinh~as!e2s, ~43!

and @see Eq.~13!#

P51, ~44!

c5c01
bs

2
, ~45!

w520.5 arcsin~ tanhas!, ~46!

wherec05p/2. Equations~44!–~46! hold for a horizontally
polarized incident beam as well~I 05b, Q05b, U05V0
50, andc050!. Thus, the linearly polarized beam is tran
formed to the elliptically polarized beam in the case un
investigation. The major axes of the polarization ellipse
shifted from the direction of the oscillations of the incide
linearly polarized beam. This shift is characterized by
valuebs/2. Note that it follows asas→0 from Eq.~46!:

w52
as

2
. ~47!

One can see that matrix elementsa and b in Eq. ~24! are
responsible for producing the ellipticity~CD! and the rota-
tion of the polarization plane~ORD! of the direct beam, re-
spectively.

The main interest of the CD and ORD spectroscopy is
spectral dependence of the valueDm5mL2mR , wheremL
and mR are refractive indices for left-handed and righ
handed circularly polarized waves, respectively. This diff
ence can be retrieved from measurements of the ORD
CD spectra.

Let us introduce the complex number

G~l!5b8~l!2 ia8~l!,

where

a8~l!5a«52
2w cosq0

z0
, b8~l!5b«

5
2~c2c0!cosq0

z0
.

t-
e-

r

r
e

e

e

-
nd

One can see that the value ofG can be obtained from mea
surements of CD and ORD spectra. On the other hand
follows from results presented in the Appendix for chir
spheres with radiia,

G~l!5
4pN

k2 E
0

`

A12~0! f ~a!da, ~48!

where

A12~0!5 (
n51

`

~2n11!cn~a,l,mL ,mR!,

f (a) is the particle size distribution, andN is the number
concentration of scatterers. Coefficientscn for uniform
spheres are presented in the Appendix. There is a sim
expression for layered chiral scatters@7#. Thus, the value of
Dm5mL2mR can be retrieved from the solution of the in
verse problem associated with integral equation~48!. This
solution is simplified for monodispersed particles, med
with known particle size distributions, and/or special types
particles when the kernelA12(0) can be represented as
simple analytical function@e.g., it follows for Rayleigh scat-
ters @8#: A12(0)5(ka)3Dm/(21m2), m52mLmR/(mL
1mR)].

C. Diffused light

The intensity of the direct beam reduces considera
with an increase in the optical thickness. The characteris
of the diffused light are of importance in this case. Let
consider the diffused light now. The analytical solution f
the valueJWd in the framework of the single scattering a
proximation can be obtained from the system of linear n
uniform ordinary differential equations~19!.

Let us rewrite Eq.~19! in the following form:

XẆ 52 «̂XW 1WW , ~49!

where

XẆ 5
dJWd

ds
, XW 5JWd , «̂5ŝext/«, s5«z/m,

WW 5gŝsJW c , ŝs5ŝsca/s, g5
w0p~u!

4p
. ~50!

We introduced the single scattering albedo

w05ssca/«, ~51!

and the phase function

p~u!5
4ps

ssca
, ~52!

normalized by the following condition:

1

2 E0

p

p~u!sinudu51, ~53!
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which follows from the definition of the scattering coeffi
cient,

ssca52pE
0

p

s~u!sinudu. ~54!

Here,u is the scattering angle.
Let us introduce a new vector

YW 5PW 21XW . ~55!

It follows from Eqs.~49! and ~55!,

P̂YẆ 52 «̂ P̂YW 1WW ~56!

or

YẆ 52L̂YW 1 P̂21WW , ~57!

where

L̂5S l1

0
0
0

0
l2

0
0

0
0
l3

0

0
0
0
l4

D ~58!

andYẆ 5dYW /ds.
One can see that we have four decoupled equations@see

Eqs.~57!# instead of more complex system of Eqs.~49! now.
These equations can be solved with familiar techniques@17#:

Yi
↓5e2l i sE

0

s

el in f i~n!dn, ~59!

Yi
↑5e2l i sE

s0

s

el in f i~n!dn, ~60!
where we accounted for boundary conditions~22! and ~23!
and

s05«z0 /m, ~61!

fW~n!5 P̂21gŝsP̂F̂ P̂21JW0 . ~62!

It follows after substitution of Eqs.~61! and ~62! into Eqs.
~59! and ~60! that

YW ↑↓5 P̂21gjŝsB̂
↑↓JW0 , ~63!

where

B̂↑↓5 P̂F̂↑↓P̂21. ~64!

The nonzero elements of the diagonalized matricesF̂↑↓ have
the following analytical forms:

F̂ ii
↑ 5

e2l i t/j2e2l i @~1/j11/h!t02t/h#

l i~h1j!
, ~65!

F̂ ii
↓ 5

e2l i t/h2e2l it/j

l i~h2j!
, ~66!

where t5«z0 and h5umu. It follows from Eq. ~66! at h
→j that

F̂ ii
↓ 5

te2l it/j

j2 . ~67!

Thus, one obtains for the diffused intensity@see Eqs.~55!,
~59! and ~60!#,

JWd
↑↓5M ↑↓N̂↑↓JW0 , ~68!

where
M ↑5
gj

h1j
, M ↓5

gj

h2j
, N̂↑↓5ŝsB̂

↑↓, ~69!

B̂↑↓5S b11

0

0

b14

0

b22

2b23

0

0

b23

b22

0

b14

0

0

b11

D , ~70!

b115
@cosh~ap!1a sinh~ap!#e2p2@cosh~aq!1a sinh~aq!#e2q

12a2 , ~71!

b145
@sinh~aq!1a cosh~aq!#e2q2@sinh~ap!1a cosh~ap!#e2p

12a2 , ~72!

b225
@cos~bp!2b sin~bp!#e2p2@cos~bq!2b sin~bq!#e2q

11b2 , ~73!

b235
@sin~bq!1b cos~bq!#e2q2@sin~bp!1b cos~bp!#e2p

11b2 , ~74!
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p5t/j, q5t0(1/h11/j)2t/h for the upward light (B̂↑)
andp5t/h, q5t/j for the downward light (B̂↓). At j5h
it follows for the transmitted light@see Eqs.~63!, ~67!, and
~30!# that

M ↓5gt exp~2t/j!, b115cosh~ap!,

b225cos~bp!, b1452sinh~ap!, b2352sin~bp!.

Equations~32!–~35! and Eqs.~68!–~74! are much more use
ful for applications than general solutions~18!, ~20! and~21!.
One should just multiply the Stokes vector of the incide
light by the matrixN̂ and scalarM to find the intensity and
polarization characteristics of a diffused light field inside o
tically thin chiral diperse media. The characteristics of t
direct beam can be found from Eqs.~26! and ~31! or Eqs.
~32!–~35!.

Note that it follows for the transmitted diffused light at
bottom of a layer (t5t0): p5t0 /h, q5t0 /j. General
equations~71!–~74! do not simplify in this particular case
However, they do simplify for the reflected light@t50, p
50, andq5t0(1/h11/j)]:

b115
12@cosh~aq!1a sinh~ap!#e2q

12a2 , ~75!

b145
@sinh~aq!1a cosh~aq!#e2q2a

12a2 , ~76!

b225
12@cos~bq!2b sin~bq!#e2q

11b2 , ~77!

b235
@sin~bq!1b cos~bq!#e2q2b

11b2 . ~78!

Let us check Eq.~68! for the special case when the e
tinction matrix is reduced to a scalar value. It follows fro
Eqs.~71! and ~74! in this case that

b115b22, b145b2350 ~79!

and @see Eq.~68!#

JWd
↑↓5b11M

↑↓ŝsJW0 , ~80!

whereb115exp(2p)2exp(2q). This formula coincides with
well-known equation@18#, derived for isotropic symmetric
media~e.g., water clouds!.

One obtains from Eqs.~71!–~74! at the small optical
depth
t

-
e

b115b225q2p, b145b2350. ~81!

Thus, the diffused intensity does not depend on the ext
tion matrix in this case. It is determined only by the diffe
ential scattering matrix as it should be.

III. CONCLUSION

The mirror symmetry is broken in living things. Protein
are constructed only from ‘‘left-handed’’ amino acid
whereas nucleic acids~DNA or RNA! contain only ‘‘right-
handed’’ sugars. Thus, most of biological media are asy
metric.

Light beams can be used for monitoring bioparticles d
ing their lifecycles. Polarization characteristics of transmitt
and reflected light are of special value. The power of chi
optical methods was well demonstrated for uniform me
@2#. However, application of same schemes for particul
media of a biological origin is not widespread due to co
plexities related to the accounting for single and multip
scattering of photons in such media.

This paper presents a system of analytical formul
which can be used in studies of light interaction with partic
late optically active media. The presentation is based on
vector radiative transfer theory. Simple analytical solutio
for the polarization characteristics of direct and diffused lig
~in the single scattering approximation! are presented.
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APPENDIX: EXTINCTION AND SCATTERING
MATRICES

Extinction and scattering matrices in radiative transp
equation~1! specify the local optical properties of a scatte
ing medium. They depend on the wavelength, size of p
ticles, and their refractive indices. One can calculate th
matrices with the following system of equations in the ca
of optically active spheres@3,4#:

ŝext5«S 1
0
0
a

0
1

2b
0

0
b
1
0

a
0
0
0
D ,

ŝsca5L̂~p2 i 2!ŝsca
s ~u!L̂~2 i 1!,

where
L~2 i 1!5S 1
0
0
0

0
cos 2i 1

sin 2i 1

0

0
2sin 2i 1

cos 2i 1

0

0
0
0
1
D , L~p2 i 2!5S 1

0
0
0

0
cos 2i 2

sin 2i 2

0

0
2sin 2i 2

cos 2i 2

0

0
0
0
1
D ,

cos 2i j52 cos2i j21, sin 2i j52A12cos2i j cosi j ,
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cosi 15
2m1m cosu

sA~12cos2 u!~12m82!
, cosi 25

2m81m cosu

sA~12cos2 u!~12m2!
,

s5sgn~f2f82p!, j 51,2, cosu5mm81A~12m2!~12m82!cos~f2f8!, m5cosq, m85cosq,

«5
4p

k2 Re@S11~0!#, a52
Im@A12~0!#

Re@A11~0!#
, b5

Re@A12~0!#

Re@A11~0!#
,

ŝsca
s 5k-2S uA11u21uA22u2

2
1uA12u2

uA11u22uA22u2

2
Re@~A112A22!A12* # Im@~A111A22!A12* #

uA11u22uA22u2

2

uA11u21uA22u2

2
2uA12u2 Re@~A111A22!A12* # Im@~A112A22!A12* #

2Re@~A112A22!A12* # 2Re@~A111A22!A12* # Re~A11* A22!2uA12u2 Im~A11A22* !

Im@~A111A22!A12* # Im@~A112A22!A12* # 2Im~A11A22* ! Re~A11* A22!1uA12u2

D
A11~u!5 (

n51

`
2n11

n~n11!
$antn~cosu!1bnpn~cosu!%,

A22~u!5 (
n51

`
2n11

n~n11!
$anpn~cosu!1bntn~cosu!%,

A12~u!5 (
n51

`
2n11

n~n11!
cn~pn1tn!,

pn~cosu!5
Pn

~1!~cosu!

sinu
, tn~cosu!5

dPn
~1!~cosu!

du
,

an5
Vn~R!An~L !1Vn~L !An~R!

Wn~L !Vn~R!1Vn~L !Wn~R!
, bn5

Wn~L !Bn~R!1Wn~R!Bn~L !

Wn~L !Vn~R!1Vn~L !Wn~R!
, cn5 i

Wn~R!An~L !2Wn~L !An~R!

Wn~L !Vn~R!1Vn~L !Wn~R!
,

Wn~J!5mcn~mJx!jn8~x!2jn~x!cn8~mJx!, Vn~J!5cn~mJx!jn8~x!2mjn~x!cn8~mJx!,

An~J!5mcn~mJx!cn8~x!2cn~x!cn8~mJx!, Bn~J!5cn~mJx!cn8~x!2mcn~x!cn8~mJx!,
d
r

a-

t-

o

e

t-
Here,

cn~x!5A~px/2!Jn11/2~x!,

jn~x!5A~px/2!Hn11/2~x!,

Jn11/2 and Hn11/2 are Bessel and Hankel functions, an
Pn

(1)(cosu) is the associated Legendre polynomial. Vecto

VW (U,f) andVW 8(U8,f8) define the observation and prop
gation directions@see Eq.~1!#. Note that it followspn(0)
5tn(0)5n(n11)/2. Values ofJ are equal toL or R, mL
5NL /n̄, mR5NR /n̄, m5mLmR /m̄, andm̄5(mL1mR)/2, n̄
is the refractive index of a host medium,NL and NR are
refractive indices of particles for left-handed and righ
handed polarized waves, andx52pan̄/l is the size param-
eter. Note that it is supposed that the magnetic permittivity
particles and a host medium is the same.

It follows for polydispersed media with the particle siz
distribution f (a) that
s

f

«̄5NE
0

`

«~a! f ~a!da, «ā5NE
0

`

«~a!a~a! f ~a!da,

«b̄5NE
0

`

«~a!b~a! f ~a!da,

z̄5NE
0

`

z~a! f ~a!da,

where values ofz represent elements of the differential sca
tering matrix. The number concentration of particlesN is
related to the volumetric concentrationCv by the following
formula:

N5
Cn

4p

3 E
0

`

a3f ~a!da

.
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